New conservation laws for inviscid Burgers equation
نویسندگان
چکیده
In this paper it is shown that the inviscid Burgers equation is nonlinearly self-adjoint. Then, from Ibragimov’s theorem on conservation laws, local conserved quantities are obtained. Mathematical subject classification: Primary: 76M60; Secondary: 58J70.
منابع مشابه
Optimal Control and Vanishing Viscosity for the Burgers Equation
We revisit an optimization strategy recently introduced by the authors to compute numerical approximations of minimizers for optimal control problems governed by scalar conservation laws in the presence of shocks. We focus on the one-dimensional (1-D) Burgers equation. This new descent strategy, called the alternating descent method, in the inviscid case, distinguishes and alternates descent di...
متن کاملExact boundary conditions for the initial value problem of convex conservation laws
The initial value problem of convex conservation laws, which includes the famous Burgers’ (inviscid) equation, plays an important rule not only in theoretical analysis for conservation laws, but also in numerical computations for various numerical methods. For example, the initial value problem of the Burgers’ equation is one of the most popular benchmarks in testing various numerical methods. ...
متن کاملKinetic Semidiscretization of Scalar Conservation Laws and Convergence by Using Averaging Lemmas∗
We consider a time discrete kinetic scheme (known as “transport collapse method”) for the inviscid Burgers equation ∂tu+ ∂x u 2 = 0. We prove the convergence of the scheme by using averaging lemmas without bounded variation estimate. Then, the extension of this result to the kinetic model of Brenier and Corrias is discussed.
متن کاملFractional Burgers equation with nonlinear non-locality: Spectral vanishing viscosity and local discontinuous Galerkin methods
We consider the viscous Burgers equation with a fractional nonlinear term as a model involving non-local nonlinearities in conservation laws, which, surprisingly, has an analytical solution obtained by a fractional extension of the Hopf-Cole transformation. We use this model and its inviscid limit to develop stable spectral and discontinuous Galerkin spectral element methods by employing the co...
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کامل